proved, althongh not to surh :an extent as for quintarime and chloroquinc.

Finally, to estimate the effect of the --chloro wht stituent on the electronic properties of the amine alt of chloroquine, we ralculated the amine salt of 4 . aminoquinoline (Figure 10). Differences botwere tho :mmine salts of 4 -aminoquimaline and ehloroquinte are slight, indieating that the 7 -rhloro substitnent mos not have murth influther an the ring structure. It companction with the face that replancomen of the $\overline{-}$ chano substitacent diminishes. but does mot abolinh binding to DNA, sin the culculation suggests. in accord

Acknowledgments.-- The athrors are gratefil to Mr. \mathfrak{k}. Sundaram for valuable romments on the mannacripu

 (layton for asisismere fin the eal culations.

 Har Namjumal hatiture of Health.

Nucleic Acids. I. The Synthesis of Nucleotides and Dinucleoside Phosphates Containing ara-Cytidine ${ }^{\text {l: }}$

Whlefan J. Weehter

Remive .Vorember 1\%, 1:16t

Abstract

 ion-exthange chomatography was employed for mall-wale istation, "onimum-fow film electrophorenir was

For abont 14 years ${ }^{11,{ }^{\prime}}$ (chemints: particularly in tha United States, have been vigoronsly engaged in this synthesis of analogs of the natmally orcurring maleosides. The rationale for the most of this work was based on the supposition that onc conld produce unigur: selective antimetabolites whith would be nseful in the treatment of neophastic and viral diseases. While a bumber of these rompounds are presently being entployed clinically, almost all of them are highly toxito manmalian rells. Finther, the infective agen or neoplasm develops resistance to these mantinctaboliter. In the hope of increasing the cellnlar selectivity of such :mintinctabolites, eithor by alternative mechanisme of action or by altemative thansport merhanisms: wo have begun a program to incorporate a variety of
 al Sutiety, Divisiun of Menicinal Chemistry, New Sork, N. Y., Sepl 12. 1906. (b) Early vorkers in this fieht included 13. t2. Baker. (i. 1: Bratha, A. 1. luex. (.. A. Jekker. T. A. Montgonery, and their co-workers; lealins references may he fomui in tdran. Carholydrate Res.. 14. 283 (1951); 17. 301 (1962). ic) Fradulent $3^{\prime} \rightarrow 5^{\prime}$ - antil $\delta^{\prime} \rightarrow \boldsymbol{j}^{\prime}$-linket dinuclessitu phosphales lave been reported subseupent to the luterception of this work: I. . M. Montromery. G. J. Dixon, E.. A. Dilinage, H. J. Thomas, R. W. Broukman, anl H. F. Skipper, Jature, 199, T69 (1963): 1). G. Parsons and (. Henlelberger. J. Aed. Chen.. 9. 159 (1960); J. Smrl and F. Sorm, Collidtion Ceerl. Chem. Commun.. 28, 61, 88, (1963); R. 1H. Hall and R. Thotform J. Ory. Chem.. 26, 1506 (1962): A. Block, M. H. Fleysiser. R. Thedfart. R. J. Tave, and R. Il. Hall, J. Med. Chem. 9. 886 (196t).
:mometabolites inta migonumpotides. ${ }^{14}$ By this me:nns we hope to contribute to a partial understanding of tha. rffects of charge, molecular weight, and molecolat confign:ation on achlular penetration ineorporation and tramsport of oligomeleotides into living systens. We. thus desire knowledge of the eelhalar metabolisint and possibly biologically anicue properties of oligomadeotides. loor this patpose we synthesized a series of dinucleoside phosphates, mucleotides and simple esters of these medeotides derived from the iytotoxic. ata
 (ara-1'ytidibe. ara-($: ~ C A)$. Cytotoxicity studies witb these componnds will breported in the accompanying paper."

Enıploying the procedures pioneered principally by Whoranta and his co-workers* all of the desired compounds wrep premed but on larger seates than those cmployed i_{1} the litarathere meparations. The prodncts were isolated by ion-cxchange chromatography. Tatrge-

[^0]scale colımı chromatography is, however, time consuming and can lead to rearrangements ${ }^{3 i}$ and degradations; consequently, a new method was developed. Purification of isomerically pure (i.e., one internucleotide linkage type) products was carried out continuously on the Hannig continuous-flow electrophoresis (cfe) apparatus which employs no stationary phase. ${ }^{4}$ All anprotected phosphorus-containing products were charanterized by their hydrolytic stability toward the mono- and diesterase of rattlennake venom, bovine spleen diesterase, ribonuclease I, and bacterial alkaline phosphatase. Nmr spectroscopy was employed to confirm the structures of all of the phosphorus-containing products.

Three routes were employed for dinucleoside phosphate synthesis. The first yielded a mixture of $2^{\prime} \rightarrow 5^{\prime}$ and $3^{\prime} \rightarrow 5^{\prime}$ isomers (both isomers were desired for biochemical and biological evaluation). A nucleoside (I) with the 2^{\prime} (and 3^{\prime}) hydroxyls unprotected was condensed with a fully protected $\mathrm{s}^{-\prime}$-nucleotide II. The proterting gromps were then removed from the intermediate withont prior purification by consecntive base and acid hydrolysis to give the desired products. III and IV (see ronte 1) which were then separated by a suitable procedıre (see Table I).

$\mathrm{I}=$ trityl or monomethoxytrityl; $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}=$ anitable protected purine or pyrimidine bases; $\dot{X}^{-2}=\mathcal{Y}^{\prime}=\alpha-0 \mathrm{H}, \beta-\mathrm{OH}$, or H : $\mathrm{Y}=\mathrm{acyl} \alpha-\mathrm{OH}$, acol $\beta-\mathrm{OH}$, or $\mathrm{H} ; \mathrm{R}=\mathrm{ac} \boldsymbol{\mathrm { yl }}$

Route 2 produced only $5^{\prime \prime} \rightarrow 5^{\prime}$-linked symmetrical or unsymmetrical dinucleoside phosphates. Condensation of 5^{\prime}-mprotected nucleosides (V) with protected nucleotides as II above followed by base hydrolysis gave an isomerically pure product VI which could then be purified by cfe.

[^1]

The third sequence afforded only symmetrical $5^{\prime} \rightarrow 5^{\prime}-$ dinucleoside phosphates and phenyl $\bar{\sigma}^{\prime}$-phosphates. The 5^{-}-unprotected nucleoside (V) was condensed with phenyl phosphodichlorodate according to Michelsonis to give products of type VII and VIII after alkaline hydrolysis.

The required protected nucleosides and nucleotide derivatives: of ara-cytidine were prepared as ontlined in Chart I. ${ }^{6}$ ara-Cytidine (1) was nonotritylated in good yield giving the ether TrCA (2). Benzoylation followed by acid hydrolysis without isolation of the intermediate gave the tribenzoate (3), a type V intermediate. Phosphorylation according to Tenerv followed by the usual base hydrolysis afforded the crystalline N^{4}-benzoyl 5^{\prime}-phosphate 4 . Acetylation of this product gave the desired protected uucleotide 5, a type II intermediate. Alternatively, anisoylation of CA followed by base hydrolysis afforded N^{4}-anisoyl-aracytidine (6) in relatively poor yield. Tritylation of this substance with p-anisyldiphenylmethyl chloride gave the methoxytrityl ether 7 (a type I intermediate) which could not be crystallized, but was homogeneons by tle. This substance was converted to a type V intermediate by consecutive benzoylation and acid hydrolysis to give the dibenzoyl derivative (8), again in poor yield. Consequently, the more desirable type I intermediate was obtained by the benzoylation of $\mathrm{TrCA}(2)$ followed by hydrolysis giving the crystalline N^{4}-benzoyl-5'-O-trityl-ara-cytidine (9). We then had the necessary protected derivatives of ara-cytidine for condensation with known protected derivatives of the natural nucleosides and nucleotides to carry out all dinucleoside phosphate syutheses.

[^2]Tabie：

No．	Compd	Abbrev：	thoute	1－blation＂	form		－$\times 10$－
10	ara－Cytidylyl－（ $\left.2^{\prime} \rightarrow 5^{\prime}\right)$－ara－cyliline	CAPCA	1		$\mathrm{NH}_{4}{ }^{+}$	2－゙	$-1:$
11	ara－Cytidylyl－$\left(3^{\prime} \rightarrow \bar{S}^{\prime}\right)$－ara－cytidine	$\mathrm{CA}_{p} \mathrm{CA}$	1	Dowex 1－12	N15 ${ }^{+}$	$2 \because$	-17
12		$\mu \mathrm{CACA}$	：	Cre	Acint	27：	－ 17
13		HCAC．	\because	PFAE－ccthutase	1mst	$2-1$	$-1:$
14		CAMd	1		NH：	$2 \mathrm{ti})$	－17．：
1.5		C $\mathrm{c}_{1} \mathrm{dt}^{-}$	1		NH．	2 c （i）	－1：$:$
11		p （Adt	2	（\％ic	Laxh	$21 i$	－1．：；
17		$\mathrm{HH}^{\circ} \mathrm{CO}$	1	（\％）	Ariul	213，	－15．
15		（A）A	1	Huway－	$\cdots H_{i}$	2 （i）	-1
$1!1$		CA $\mathrm{Cl}^{\text {a }}$	1		N11．${ }^{-}$	$26: 1$	$\cdots 1$
21		pCAA	\because	（\％e	Anid	\bigcirc	－ 21
$\because 1$		A＂d	1		Arid	26	－ 21
\cdots		$\mathrm{A}_{1} \mathrm{C} \cdot \mathrm{A}$	1	6，wex 1－32 ：	Arid	$2(6:$	－ 21
2：；		CAPdA	1		Acid	$2 \mathrm{SiO}_{2}$	$\because 1$
24		（ A, d d	，		Arid	$2{ }^{2}$	$\cdots 1$
2.7		（A）	1	bower 1－x\％	$\mathrm{NH}_{4}{ }^{+}$	29	-17
21		CA，${ }^{\text {c }}$	1	1）wrex $1-\mathrm{X}$ ？	NH_{4}	20	-17
27		Led	，	buwey l－${ }^{\text {a }}$	$\cdots \mathrm{H}^{+}$	2 ti,	－in
2		1.18 .8	1	Dowex 1－X2	$\cdots H_{i}$	2 it .5	-15
29		（ $\mathrm{Al}^{\prime \prime}$	1		入H：${ }^{\text {c }}$	27	－M．
：0		$(1.10$	1	Towex $1-\mathrm{d} 2$（momitte）	$\mathrm{NH}_{1}{ }^{+}$	2	－ $1 \times$
： 1		$\mathrm{T}_{1} \mathrm{C} \cdot \mathrm{C}$	，		E， $\mathrm{NH}^{\text {－}}$	26	－18．0
：$: 1$		pCAde	．	Cli．	And	27	17，
碞	wa－Cyidyty－is＇\rightarrow a＇m－vtidiue	p （1）	\because	（\％te	Acid	2%	-1511
： 4		$\mathrm{H}^{1} \mathrm{CAT}$	；	1NAE－redhuter	F	26	－ 1.6
S		persin	\because	Papergrap wivat	NH，－	27	
3		$\mathrm{l}^{\prime} \mathrm{lq} \mathrm{C}^{\text {d }}$	：	（\％）	Arid phll:	2－1）	anis
41）		1 CA		See Experimen	al Section		
41		Mep， $\mathrm{CA}^{\text {a }}$	1	Sitioul gctap ma	NH_{4}	271	－！
44	＂ca－Cytidiuc 3^{\prime}－phowitar	CA_{1} ，		sim Pxprimen	at section		
4.7	ura－Cytidine 2^{\prime}－phowphate	CA＂		sce Fixperimen	al section		

 individual for roue 1 products ：（ud un attempt was made to improve yields．＂High－voltage electrophoresis（hve）was carried ont in

 thesized in eseutialty the same manner ar was report by T．Y．Shen，H．M．Lewis，and W．V．Buyle，Division of Medicinal Chemistry．

In Table I are summ：rized the prochets of condensa－ tion reactions（arried out actording to literature pro－ cedures ${ }^{3 a-l}$ via reaction routes 1－3．In addition，the st：urting materials，isolation methods，and thin layer chromatographic，high－voltage electrophoresis，ultra－ violet，and shorthand abbreviation data for each of the products are listed in Table I．Twenty－five diuncleo－ side phosphates are compiled（ $\mathbf{1 0 - 3 5}$ ）therein．Com－ ponnds which contain ara－midine（UA）arose from de－ amination of asa－cytidine（CA）during the sruthetic sequence or chronatography（generally in low yield）． The prodncts synthesized by route 1 in which two isomers（could be produced（ $2^{\prime} \rightarrow \boldsymbol{j}^{\prime}$ and $3^{\prime} \rightarrow \boldsymbol{j}^{\prime}$ ）gave essentially equal amonnts of each isomer where 2^{\prime}－ and 3 ＇ribosyl hydroxyls were being phosphorylated． On the other hand，isomer distribution where arabinosyl 2＇－and 3＇－hydroxyls were being phosphorylated favored attack at the 3 －hydroxyl which is less hiudered sterically．In these cases，the $3^{\prime} \rightarrow 5^{\prime}$ isomers were obtained in about 3：1 ratios over the $2^{\prime} \rightarrow 5^{\prime}$ isomers． This，of course，represents a very small，but significant． energy difference between the phosphorylation of the two hydroxyls．

For the purposes of biochemical and biological com－ parisom，the three madeotides derived from ara－C ：ind the methyl ester of ara－rextidiue $\bar{\sigma}$－phusphate（ 40 ． $\mathrm{pCA} \mathrm{A}^{6}$ ）were prep：red as outlined in Chart II．＂
ara－Cytidine 5＇$^{\prime}$－phosphate（ $\mathbf{4 0}$ ）was prepared starting with the J^{\prime}－O－trityl derivative 2，which was com－ pletely acylated with acetic anhydride and giving in， good vield the triacetate（37）．A number of attempts to selectively hydrolyze the trityl group of 37 were only partly surcessfinl．Under our best conditions there was both N ：und O deacylation．The $2^{\prime}, 3^{\prime}-\mathrm{O}$－ diacetate（38）was isolated in addition to a 30% yield of the desired triacetate（ 39 ）in our best preparation． Phosphorylation of 39 by the Tener procedure ${ }^{\text {bb }}$ followed by base hydrolysis ：ffforded the desired nucleotide $\mathrm{pCA}(40)$ as the crystalline free acid．This synthesis confirmed the structure of the enzymatically prepared nucleotide ${ }^{7}$［structure was confirmed by nmr spectra （Table II）］．Satisfactory uv and ir spectra， pK values，and a combustion analysis were obtained． Subsequently，a much more efficient process for the synthesis of $\mathbf{4 0}$ was developed．Debenzylation of the rrystalline intermediate 4 proceeded to give directly

and without chromatography the crystalline anmonium salt of the desired acid 40 in 66% yield.

In order to prepare the methyl ester of ara-cytidine, 5 was alkylated according to Khorana. ${ }^{8}$ Hydrolysis with ammoniacal methanol afforded the ester MepCA (41) in 60% yield. For the synthesis of the 3^{\prime} and 2^{\prime} nucleotides TrCA (2) rather than the N -protected $\operatorname{TrCA}(\mathrm{NBz})(9)$ was chosen as the starting material. Since N-phosphoroamides could be hydrolyzed, the additional steps for the preparation of 9 would have been less efficient over-all. Phosphorylation of 2 gave : mixture of 5 -O-trityl phosphates (42 and 43) after base hydrolysis. Acid removal of the trityl protecting groups from the two protected nucleotides, 42 and 43, gave CA_{p} (44) and CA^{p} (45). The free

[^3]nucleotides were easily separated by ion-exclange chromatography. The identification of isomers was mide based on several sets of evidence.
From the known behavior of cytidine 3^{\prime} - and 2^{\prime} phosphates, ${ }^{9}$ one would expect the 2^{\prime} isomer to be eluted first from the chromatographic column. Our experience with isomer distributions from phosphorylation, by a nucleotide, of the arabinosyl hydroxyls of 9 clearly indicates that the 3^{\prime} isomer should predominate in such a reaction by a factor of about 3 . Experimeutally, we fonnd that the first isomer eluted was, as anticipated, produced in the lower yield and by a factor of onethird. Thus, the former compomid was assigned the 2 '-phosphate structure (45), :und the latter compound w:is obtained in greater yield (the 3^{\prime}-phosphate structare 44). These gross structures were supported by the numr spectra of the two actids which will be detailed later in the discussion. The conclusions derived by 11 mr concerning the position of phosphate substitution was unfortunately equivocal with respect to the 2^{\prime} and 3^{\prime} nucleotides. Incorporation of each of these products into dinucleotides gave a product which
 tlebic I'ress Inc. New York. N. Y.. lษ55. Clapter 6.

$\mathrm{NHB} \mathrm{\%}$
$1,1 \mathrm{~A} \cdots$

allowed enzymatic confirmation of their strinetures. Spleen phosphodiesterase degraded the dinucleotidr: derived from the 3^{\prime}-phosphate (44) (spleen enzyme cleaves only $3^{\prime} \rightarrow{ }^{-}{ }^{\prime}$ ' intermuleotide linkinges) :and did not degrade the dimucleotide containing the $\cdot 2^{\prime}$-phos:phate. ${ }^{10}$ Therefore, the original assignments based on dimmatographie nobility and vield were confinned enzynatically. It is important to note that all of the products wire stable in in sterile :unteons solution :a room temperature for several days and that they : apparently can be stored indefinitely as frozen aqueons solution. Representative products, listed in Table I (excepting 21, 22, 27, and 28) :rre stable in 0.1 N potassium hydroxide solution for 16 hr at 37°. Thus, the arabinose 3^{\prime} '- and 2^{\prime}-phosphate oligonucleotides exhibit the same stability as deoxyribotides toward bast: There wat no detectable lyiricipation of tho
(a) vat 11

$\underline{3}^{\prime}-$ or $::^{\prime}$-hydroxyls in the displuxment of phosphate with concomitant oxide formation as was demonstrated ${ }^{11}$ for ryclohexyl erythro-3-hydroxy-2-butyl hydrogen phosphnate system ($1 \mathrm{~N} \mathrm{NaOH}, 100^{\circ}$) which gives purc meso-butate-2,3-diol which is clearly derived from an internediate 2,3 -epoxide. That this reaction was not observed with a dimeleoside phosphate of the (ype CApN (where N is athy mateoside
and the diester linkage is either $2^{\prime} \rightarrow 5^{\prime}$ or $3^{\prime} \rightarrow 5^{\prime}$) is indicative that a $2^{\prime}, 3^{\prime}$-epoxide in the furanose ring is energetically unfavorable.

Enzyme Characterizations (summarized in Table II). --(Generally the ara-cytidine-contaning dinucleoside phosphates and nucleotides react as they might be expected to based on the known enzymology of oligonucleotides. ${ }^{3 \mathrm{~b}}$ All of the compounds synthesized herein (ontaining $3^{\prime} \rightarrow \boldsymbol{m}^{-}$' internucleotide linkages are degraded quantitatively to \bar{j}^{\prime} nucleotides and nucleosides by venom diester'ase and 3^{\prime} nucleotides and nucleosides by spleen phosphodiesterase. Each compound has been shown to give equimolar amounts of each component. Hydrolysis rates of all of the compounds were slow when compared with ribodinucleoside phosphates (i.e., require more enzyme and longer reaction time for quantitative (leavage). As expected RNAase degraded only $\mathrm{U}_{\mathrm{p}} \mathrm{CA}(\mathbf{2 8})$ since the enzyme requires a 3'-ribopyrimidine nucleoside. Contrary to the experience of Thedford, et al., ${ }^{1 \prime}$ who found that the RNAase degradation of $\mathrm{U}(\overline{5}, \mathrm{Me})_{\mathrm{p}} \mathrm{U}(\overline{5}, \mathrm{Me})$ was conpletely inhibited by the presence of an equimolar amount of the $2^{\prime} \rightarrow 5^{\prime}$ isomer $\mathrm{U}(5, \mathrm{Me})^{\mathrm{p}} \mathrm{U}(\overline{5}, \mathrm{Me}), \mathrm{U}_{\mathrm{p}} \mathrm{CA}(27)$ did not inhibit the hydrolysis of $\mathrm{U}_{\mathrm{p}} \mathrm{CA}(\mathbf{2 8}) .{ }^{\text {13 }}$

The $2^{\prime} \rightarrow 5^{\prime}$-linked dinucleoside phosphates hydrolyzed very slowly with venom diesterase. The most outstanding examples of this phenomenon were $\mathrm{CA}_{\mathrm{p}} \mathrm{CA}$ (10) and $\mathrm{CA}_{\mathrm{p}} \mathrm{dU}$ (14) for which no hydrolysis could be deterted after the 2 hr. These compounds require nore than $\underline{2} 4$ hr for connplete hydrolysis. This unusual enzymatic stability is probably due to the fact that such $2^{\prime} \rightarrow 0^{\prime}$ intermucleotide bonds involve the 2^{\prime} hydroxy of an ar"abinoside and, consequently, results in a folded conformation of the dinucleoside phosphate. This conformation in turn adversely effects the adsorption of the substrate to the enzyme active site $[c f$. ribo-2' $\rightarrow 5^{\prime}$ link (A) with ara-2' $\mathbf{o}^{-5^{\prime}}$ link (B)]. The

A

tians configuration of the arabinose hydroxyls should not affect this hydrolysis since the enzyme ostensibly attaches to the 3'-hydroxyl of the sugar which becomes the nucleotide. Ribose dinucleoside $2^{\prime} \rightarrow 5^{\prime}$ phosphates are hydrolyzed neither by spleen diesterase nor RNAase. Similarly, none of our $2^{\prime} \rightarrow 5^{\prime}$ dinucleosides were hydrolyzed by these enzymes.

The simple nucleotide esters 36 and 41 of $\mathrm{pCA}\left(5^{\prime}\right)$ were subject to hydrolyses by venom diesterase and were quite slow, but did, with time, give ara-cytidine quantitatively.

[^4]Unexpectedly, the $5^{\prime} \rightarrow 5^{\prime}$ dinucleoside phosphates, which are substrates for the venom enzyme only, exhibited an unanticipated specificity. One would expect an unsymmetric (with respect to base) $5^{\prime} \rightarrow 5^{\prime}$ dinucleoside phosphate to give upon enzymatic cleavage essentially equimolar amounts of the two nucleosides and two nucleotides. All of the arabinosecontaining $5^{\prime \prime} \rightarrow 5^{\prime}$ dinucleoside phosphates, pCACA (12), pCAdC (16), pCAA (20), pCAdC (32) pCAC (33), pCATu (35), gave on enzyme hydrolysis either ara-cytidine or ara-uridine as the exclnsive nucleoside product. The $5^{-\prime}$ mucleotide was exclusively that derived from the remaining nucleoside. We can conclude from the sever'al examples that (1) selectivity is not dependent on the heterocyclic base; therefore, the sugar configuration is responsible for the direction of cleavage; (2) for practical purposes, ribosides and deoxyribosides are interchangeable and do not affect specificity in competition with :rabinosides; and (3) arabinosides can be substrates. Considering the possible explanations of this specificity, one can speculate, in the light of the total enzyme cleavage picture, that the arabinofuranosyl sugar moiety is far less favored as a site of enzyme attachment, so much so, that it is not competitive with ribo- and deoxyribosides.

The three nucleotides of ara-cytidine were characterized enzymatically first by the ability of alkaline phosphatase to dephosphorylate the $2^{\prime}-, 3^{\prime}-$, and 5^{\prime}-phosphates (compounds 45, 44, and 40, respectively) to ara(ytidine. Secondly, the monoesterase of crude snake venom, when incubated separately with the three mucleotides, degraded only the 5^{\prime}-phosphate (40).

Nmr Characterizations (assignments summarized in Table II).-Where sufficient compound was available, the nmr spectra of all products and most of the intermediates and starting materials were examined. From these studies we were able to establish the following: (1) which nucleoside bases were present and their ratio to one another, (2) independent confirmation of the class of internucleotide linkage, (3) (lifferentiation of the sugar moieties present, and (4) mequivocal differentiation of the three meleotides of ara-cytidine.

By noting the chemical shift and integrating the peaks resulting from the $\mathrm{H}-6, \mathrm{H}-5, \mathrm{H}-8, \mathrm{H}-2$. and $\mathrm{H}-\mathbf{1}^{\prime}$ protons in a spectrum, one can identify, employing models, the five common as well as other heterocyclic bases present in dinucleoside phosphates or dinucleotides and ascertain from the integration of these peaks the ratios of bases to one another. With higher oligonueleotides sone of these details nuay be obscured by overlap of many contributors to the spectrum. The internucleotide linkages of dimers can be classified as $5^{\prime} \rightarrow 5^{\prime}$ if there is no characteristic 5^{\prime}-hydroxymethylene resonance in the $230-235-\mathrm{cps}$ area. While at 60 Mc sec the $2^{\prime} \rightarrow 5^{\prime}$ and $3^{\prime} \rightarrow 5^{\prime}$ linkages may not be assigned, there are sufficient differences in the 240 280 -cps portion of the spectrum as well as shifts in the base protons to allow the differentiation of the isomers. The sugars employed in this study can be identified. Compounds containing deoxyriboses have a $2^{\prime}-\mathrm{CH}_{2}$ multiplet at about 140 cps and their downfield H-1' protons : :ppear as triplet absorptions ($J=$ 6-7 cps). Ribose and armbinose derivatives nay be distinguished by the coupling of the $\mathrm{H}-1^{\prime}$ protons in

Tible 1l: Charsuterizatmen

H-4'			OD units and substrate	Venom diesterase products	-Enzyme ${ }^{b, e}$ \qquad Spleen dieslerase products	RNA.Ase products	Bact alk pllos products
	H-5'	Other					
		230					
244 m		233 m					
	203111	ArH 445 n 1					
275111	$24 \% 111$	$\begin{aligned} & o-\mathrm{H} 485, m \text { - } \mathrm{HI} \\ & 456.5, p-\mathrm{H} 474 \\ & \text { ArH and pyH } 460 \\ & \quad \mathrm{~m}, 523,517 \\ & 222 \end{aligned}$					
273 mm	245 (br)	$\mathrm{CH}_{3} \mathrm{O} 233$					
240 nl	232 m		5.2	CA, pCA (24 hr)	No reaction		
	235 m		7.0	CA, pCA	$\mathrm{CA}, \mathrm{CA}_{\mathrm{p}}(24 \mathrm{hr})$		
			3.4	CA, „CA	No reation	No reaction	
	2303111		2.6	$\begin{aligned} & \text { CA, pdU (incomp } \\ & 24 \mathrm{hr} \text {) } \end{aligned}$	No reaction	No reaction	
	236 nm		2.5	CA, pdU	$\mathrm{CA}_{\mathrm{p}}, \mathrm{dU}$	No reaction	
			7.5	pdU, CA	No reaction		
				pCA, dU	$\mathrm{dL}^{\circ}, \mathrm{CA}$		
	231111		4.8	pA, CA	No reaction		
	231 nm		5.6	CA, 19A	$C A_{p}, \mathrm{I}$		
	237 m		5.0	CA, pA	No reaction		
	234 m		5.3	A, pA	No reaction		
	232 sh?						
	237 m		6.4	A, 1 CA	$I_{p}, A_{p}, C . A$		
	232 m		4.0	CA, pdA	No reaction		
	227 m		6.5	CA, pdA	CA_{p}, dI		
	234 m		9.0	CA, pU	No reaction	No reaction	
	231 m		7.2	CA, pU	$\mathrm{U}, \mathrm{CA}_{\mathrm{p}}$	No reaction	
	236 m		4.7	pCA, U	Noreaction	No reaction	
	232 m		5.6	${ }^{1} \mathrm{CA}, \mathrm{U}$	($A, \mathrm{~T}_{\mathrm{p}}$	$\mathrm{CA}, \mathrm{U}_{1}$	
	232 m	$\mathrm{CiF}_{3} 112$	0.0	p', CA	No reaction		
	232 m	$\mathrm{CH}_{3} 111$	4.7	p'1, CA	$\begin{aligned} & \mathrm{CA}_{\mathrm{p}} \\ & \mathrm{~T} \end{aligned}$		
	230 m	$\mathrm{CH}_{3} 118$	15	Γ, pCA	$\begin{aligned} & \mathrm{T}_{\mathrm{n}} \\ & \mathrm{CA} \end{aligned}$		
	248 (bruad singlet)		3.0	CA, pdC	No reaction		
	248 (broad singlet)		5.0	CA, pCA	No reaction		
	230 m		1.8	UA, CA, ¢ $\mathrm{UA}, \mathrm{pCA}$	Norenction		
			5.0	pTu, CA	No reaction		
		$\begin{aligned} & \text { ArII } 432.5 \text { (brotd) } \\ & \mathrm{CH}_{3} \mathrm{CONH} 117 \\ & \mathrm{CH}_{3} \mathrm{CO}_{2} 130,135 \end{aligned}$	0.5 mg	pCA	No reaction		
			15	CAd			CA
		$\begin{gathered} \mathrm{CH}_{3} \mathrm{O} 218 \\ \left(J_{\mathrm{HP}} 13\right) \end{gathered}$	9.6	pCA (18 hr)	No reaction		
		239111	0.5 mg	No reaction ${ }^{\text {d }}$			CA
		235111	0.5 mg	No reaction ${ }^{\text {d }}$			CA

both statility of the spectrometer for the fime required for a single spectrum and the identity of inflaence of the individual samples on the resonance frequency of the calibration line. Where water is used as the standard (two cases) all values are probably $\pm 10 \mathrm{cps}$. ${ }^{d}$ In this enzymatic hydrolysis crude rattle snake venom $(20 \mathrm{mg} / \mathrm{ml})$ was substituted for the purified diesterase in order to determine reactivity toward the 5^{\prime}-mononucleotidase of this substance. eSee ref 6 for an explanation of the abbreviations used.
some cases as $J_{1,2}$ for ribosides is generally greater than for arabinosides.

The structures of the ara-cytidine nucleotide derivatives were confirmed independently of their assigmment based on synthesis and enzymology. The 5^{\prime}-phosphate (40) clearly shows functionalization of the 5^{-}OH resulting in a downfield shift of the $5-\mathrm{CH}_{2}$, normally at 233 cps , to about 250 ups . Many of the details of the spectra of 3^{\prime} - and 2^{\prime}-phosphates diffeer greatly $=0$ that they are easily distinguished from one mother : mod the 2^{\prime} isomer which was assigned its structure owing to a small but definite upfield shift of the $\mathrm{H}-\overline{\mathrm{s}}, \mathrm{H}-6$, and $\mathrm{H}-\mathrm{s}^{\prime}$ ' protons owing ostensibly to phosphate anisotropy. Certainly at 100-Mc/secs, spis and heteronuclan (P) decoupling, and prior exchange of the OH protons. the downfield shift and splitting due to P 'onide be determined for the $2^{\prime}-\mathrm{H}$ and $3^{\prime}-\mathrm{H}$ indepentently. |'Tlu: $\mathrm{P}-\mathrm{H}$ coupling in M (apCA (41) is $13 \mathrm{cps}$. .

These dinucleosides phosphates and their intertacdiates were studied biologically in terms of their cytotoxicity toward KB cells, Lō17SY lenkemia cells, :and antiviral properties in citro and in uido. This work will be reported in part in the accompanying papers. ${ }^{2} .14$

Experimental Section

General.-- Paper chromatography was performed by the descending technicue enplosing Whatman thromatographic paper ue. 40, 44, 3HR, and 3MAI. Thin tayer chromatography was carried out ou phate coated (100)-200)- μ thick) with either Camag sitica get (i or Camag cellutore l)F (A. H. Thomas) hy the ascending techuigue. The whem -ratems used rontinety were isopropyt alcohol-concentrated $\mathrm{NH}_{4} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ ($(: 1: 2 \mathrm{~V} / \mathrm{v}$) (solvent, A): isobatyric arid-1 M $\mathrm{NH}_{4} \mathrm{OH}$ (0.1 .1)-NaEDT. (100:60:1.6) (solvent B): ethyt ateohtol-1 M NH_{4} OAc (pH 7.5) (5:2) (solvent C) a-propyt alcohol-concentrated NHOLI-
 (5):2:3) (sotvent (i); isopropsl alcohol-concentrated $\mathrm{NH}_{4} \mathrm{OH}-$ 0.1 M boric acid ($5: 1: 2$) (solvent I). Reagent grade pyridiue was stored over CaH , before use; purified perimine refers to reagent, pyridine that has been purified by the nethorl of Khorana. ${ }^{15}$ Melting points are meorrected (Thomas-Hoover C"ni \backslash Iett apparatos). Petrolemm ether employed was the commerciat fraction having a boiting range of $40-60^{\circ}$. For chroma-
 fion we te carried on at 30°, excep where noted otherwise, on : Buchi Rotavap evaporator (Brinknum Instrumeni Co.).
5'-O-Trityl-ara-cytidine (2). A solntion of $\overline{3} 0 \mathrm{~g}$ (of wou" Y tidine hydrochloride and 20 g of impure mint bronide in 150 mi of prridine was silired at ronul lemperature overnight. 'The resulting suspensiou was filtered free of sulid and ponred into, 1.5) 1 . of $\mathrm{H}_{4} \mathrm{O}$. The resolting solid was isolaned, washed with $\mathrm{H}_{2} \mathrm{O}$) :and dried (in zacuo, $\left(60^{\circ}\right)$. The dry material was triturated three times with 100 nll of boiling heptane, then rearystallizend from acetone with : 1)areo treatment ti) give $6.54 \mathrm{~g}(75 \%)$ of the
 A sample was recrystallized from achouce formasis, mp 208.5$2 \cdot 9.0^{\circ}$.
 Fomud: C, i9.09: H, $5.67: \mathrm{N}, \mathrm{x} 93$.
\mathbf{N}^{4}-Benzoyl-2', $\mathbf{3}^{\prime}$-O-diacetyl-u'u-cytidine (3), - $)^{\prime}$ - 0)-Trityl-arn-cyidine (2) ($6.2 \mathrm{~g}, 12.8$ umoles) in 41) ull of dry prodiue was treatod with henzort charide (6 mll . 5) momoses) and allowed to - tand al rom temperature overnigh. The reaction mixture was
 ring was cominned for :3 the. 'The aphems portion was decanted from the residnat gun tand the rexidue was washed iwice with willer. 'line residue wat taken up in methylene chloride (150 ull) : aut Itrix sidation wiln washed culisechtively with $\mathrm{H}_{2} \mathrm{O}$ (two

[^5]was taken to dryness minder reduced pressure and the residue was dissolved in 50 ml of CHCl_{3} and treated with 6.7 ml of 30% HBr in acetic acid. After 3 min at room temperature the solution was reduced to about 10 ml under reduced pressure. This sotution was actsorbed onto a column of silicen acidis made up wirh $\mathrm{CHCl}_{3}(100 \mathrm{~g}$ of silica gel, $18 \times 7(1 \mathrm{cmo}$ after ditution with an ectual volumar of CHCl_{3}. The colnmm wion then elated with ant) wh of etham-stabilized CHCl_{3} (fow ra, 3.5 mf min: ant athe etfluent was discarden. The cotuma was then eluted with 1.2l. uf ordinaty CHCl to which 36 , (v/rituf methmot had been adelert. This ethluent was collected in 20-mb fractions. Tho tractions were examined for the presence of miphenvterthint ur bint exter hy phecing a sot of each fraction on fiter paper
 -haty. tat thin hathaer the approxintate position of the desired

Alat. (:illed for (

Pyridinium $\mathrm{N}^{\text {i-Benzoyl-ara-cytidine }} \mathbf{5}^{\prime}$-Phosphate Hydrate 14). Appmambacty 50 monole of pridiniunt β-cyanothyl
 antudnum protitia. The residue was then disolved in to mo

 (300) g. tö mondow was added. and the mixhare was shatsen

 predipitate was removed by filtanibu. The sotveme were rex moved muder redured pressure :und the residuce was ionken up in :

 uf peridine, the revidue was dituted to 50 nut with water, the proct-

 $\mathrm{n}, \mu(\in 26,30 \mathrm{~B}), 30 ; 114,1050$)

N^{-}-Benzoyl- $2^{\prime}, 3^{\prime}$,O-diacetyl-aca-cytidine 5^{\prime}-Phosphate (5).

[^6]Tle on silica gel G (solvent A) showed one major material and was employed without further purification.
\mathbf{N}^{4}-Anisoyl-ara-cytidine (6).-ara-Cytidine (1) hydrochloride $(5.0 \mathrm{~g})$ and anisoyl chloride (25 ml) were dissolved in pyridine $(100 \mathrm{ml})$ and the solution was stirred at room temperature for 6 hr . Acid ($400 \mathrm{ml}, 1.5 \mathrm{~N} \mathrm{HCl}$) was then added and the solution was allowed to stand overnight at room temperature. The solid was filtered, washed, ground thoroughly with $\mathrm{H}_{2} \mathrm{O}$, and airdried. The residue was suspended in $\mathrm{H}_{2} \mathrm{O}(275 \mathrm{ml})$ and ethanol (250 ml) and warmed to 70° on a steam bath. The cool suspension was then chilled to 4°, the pH was adjusted to 8 with 1 N NaOH , and the solid was filtered immediately, washed with water, air dried, then washed with three portions of ether (100 ml). The solid was then stirred rapidly with 100 ml of ether, filtered, and air-dried to give 16.6 g of crude product containing some anisic acid by tlc ($5 \% \mathrm{MeOH}-\mathrm{C}_{6} \mathrm{H}_{6}$, silica gel G). The crude product was taken up in pyridine (195 ml) and water (65 ml) and chilled to ice temperature. The solution was then treated with vigorous stirring with 350 ml of 1.5 N NaOH for 0.5 hr . The reaction was terminated by the addition of ca. 350 ml of Ilowex $50-\mathrm{XX}$ ($50-100$ mesh) pridinium resin foltowed by stirring for ${ }^{2}$ () min (plI 7.0). The solution was fillered free of insoluble material. The residue was washed with water. The conbined filt mates were laken to dryness in vacuo at $<50^{\circ}$, and the residue was stirred with three 200 -ml portions of ether and filtered. The solid was then suspended in 300 ml of boiling water and filtered (three times). The combined filtrates were evaporated to a small volume under reduced pressure giving 2.0 g of product, $\mathrm{mp} 197-200^{\circ}$ dec. A sample was recrystallized fonr times from $\mathrm{H}_{2} \mathrm{O}$ and once from methanol for analysis; $\mathrm{mp} 200.5-201.5^{\circ} \mathrm{dec} ; \lambda_{\max }^{\mathrm{H2O} \mathrm{O}} 216 \mathrm{~m} \mu(\epsilon 20,450)$, sh $256(12,800)$, sh $286(20,850), 304(25,200)$.

Anal. Calcd for $\mathrm{C}_{1}=\mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7}: ~ \mathrm{C}, 54.11 ; \mathrm{H}, 5.08 ; \mathrm{N}, 11.14$. Found: C, $54.38 ; \mathrm{H}, 4.82 ; \stackrel{11.31}{ }$.
$\mathbf{5}^{\mathbf{\prime}}$-O-Monomethoxytrityl- N^{4}-anisoyl-ara-cytidine (7).-N $\mathbf{N}^{\mathbf{4}}$ -Anisoyl-ara-cytidine (4.8 g), dissolved in pyridine (50 ml), was treated with p-aulisyldiphenylmethyl chloride (9.5 g). After 9 hr methanol (10 mll) was added and the pyridine solntion was poured into 600 ml of $\mathrm{H}_{2} \mathrm{O}$ and stirred. When the gum had coagulated, the solution was decanted. The gum was washed with $\mathrm{H}_{2} \mathrm{O}$ several times by decautation. The gum was then taken up in methylene chloride, washed with $\mathrm{H}_{2} \mathrm{O}$ (two times) and satirated NaCl polntion, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and taken to dryness at 30° in vacuo. The residue dissolved in benzene was adsorbed oulo a columu of silica get ($5.8 \times 48 \mathrm{~cm}$) made up with tenzene and elated with twenty 100 -ml fractions of $2 \sigma_{6}$ meth-anol-benzene, then forty 100 -ml fractions of 5% methanol. Fractions 49-60) were triturated with ether, giving a crystalline solid which was collected and washed with ether (combine:t in acetone). The product, 4.21 g ($36-39 \%$ for the three steps from CA), exhibited a siugle uv-absorbing spot by tle ($10 \% \mathrm{MeOH}-$ $\mathrm{C}_{6} \mathrm{H}_{6}$ on silica gel G), but carbinol impurities conld be detected with $500_{6}^{4} \mathrm{H}_{3} \mathrm{SO}_{4}$ spray. Attempts to recrystallize this material were unsuccessful. A sample was precipitated from THF with ether at -20° and this material (i.e., not analytical sample) was submitted for analysis: $\lambda_{\max } 285 \mathrm{~m} \mu(\epsilon 23,800)$, sh 303 $(21,350) ; \nu_{\max } 3340,1690,1645$, and $1600 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{7}: \mathrm{N}, 6.47$. Found: $\mathrm{N}, 6.27$.
N^{4}-Anisoyl-2', $\mathbf{3}^{\prime}$-O-dibenzoyl-ara-cytidine (8).--A 4.0-g sample (6.2 mmoles) of MTCA(NAn) in dry pyridine (20 nll) was treated with 3 ml (25 mmoles) of benzoyl chloride. The sealed reaction mixture was allowed to stand 18 hr at room temperature. The mixture was then ponred into ice-water and stirred for 3 hr at ambient temperatare, giving a gummy solid. The crude product was extracted into two $50-\mathrm{ml}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, after which the combined extrache were washed consecutively with water (five times), salurated NaCl solutin, dried ($\mathrm{Na}_{3} \mathrm{SO}_{4}$), and taken to dryness in vacuo. The residnal pyridine was codistilled with tolnene at reduced pressure and the residue was taken up in dioxane (50 ml) and treated with 80% acetic acid $(50 \mathrm{ml})$. After 24 hr the reaction was incomplete as evaluated by tle ($10 \% \mathrm{MeOH}-\mathrm{C}_{6} \mathrm{H}_{6}$ on silica gel G): consequently, the solution was made $0.0: 3 \lambda$ ill HCl . After 5 hr hydrolysis was complete. The solvents were then removed at 40° in vacuo then reevaporated with 100 ml of $1: 1 \mathrm{CHCl}_{3}$-ethanol. The residue was taken up in CHCl_{3} and absorbed outo a column of silicic acid ($2.5 \times 40 \mathrm{cmin}$) made thp with CHCl_{3}. The colnmm was elated with four $250-\mathrm{ml}$ fractions of chloroform (0.75% $\mathrm{E}+\mathrm{OH}$), followed by six $250-\mathrm{ml}$ fractions of CHCl_{3} with 3% metlanul added. Fractions $\overline{5}-8$ were combined and absorbed
onto a fresh silica gel column ($2.8 \times 50 \mathrm{~cm}$) made up with alcohol-free CHCl_{3} in the same CHCl_{3}; it was then eluted with four column volumes of ordinary CHCl_{3}, followed by 2 l . of 3% methanol- CHCl_{3} collected in $20-\mathrm{ml}$ fractions at a column rate of $5.0 \mathrm{ml} / \mathrm{min}$. Fractions $46-54$ contained the desired material (220 mg), mp ca. $167-174^{\circ}$ (from ethyl acetate-Skellysolve B). A sample was recrystallized for analysis; $\mathrm{mp} 172.0-173.0^{\circ}$; $\nu_{\text {max }} 3540,3380,1720,1690,1655$, and $1605 \mathrm{~cm}^{-1}$; $\lambda_{\max }^{\mathrm{E}_{\text {tor }}} 232 \mathrm{~m} \mu$ $(\epsilon 35,700), 288(24,650)$, and $\operatorname{sh} 303(22,350)$.
Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{9}: \mathrm{C}, 63.58 ; \mathrm{H}, 4.65 ; \mathrm{N}, 7.18$. Found: C, 63.62; H, 5.12; N, 7.23.
N^{4}-Benzoyl-5'-O-trityl-ara-cytidine (9).--5'-O-Trityl-ara-cytidine ($\overline{5} .0 \mathrm{~g}, 10.3$ mmoles) in $3 \overline{5} \mathrm{ml}$ of pyridine was treated with benzoyl chloride (5.0 ml) and stirred overnight. The suspension was poured into 400 ml of $\mathrm{H}_{2} \mathrm{O}$, and the mixture was stirred overnight at room temperature. The gummy product was filtered, washed thoronghly with $\mathrm{H}_{2} \mathrm{O}$, and then taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$. This solution was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, saturated $\mathrm{NaCl} \times \mathrm{ol}$ ation $(100 \mathrm{ml})$, and then taken to dryness under redured pressure. The residue was taken u iu 400 ml of atsolnte methanot and 200 mt of dry THFF, and the solution was chilled to ice lemperature. The cold solution was treated with 10 ml of 25 C NaOCl a in met hanol and the coanse of the reaction was followed by tle (rilica gel (i, $10 \% \mathrm{MeOH}-\mathrm{C}_{6} \mathrm{H}_{6}$). After 30 min at $0^{\circ}, 110 \mathrm{mt}$ of Dowex $50 \mathrm{~W}-\mathrm{X} 8$ (pyridinimm) resin (20-50 mesh) was added, whereupon the pH of the solution dropped to about 7.0. The suspension was filtered free of resin and the resin was washed with two $50-\mathrm{ml}$ portions of methanol. The combined filtrates were taken to dryness at 30° (water pump) and then dissolved in a minimum volume of benzene. The benzene solution was adsorbed onto a column of silica gel ($58 \times 4.8 \mathrm{~cm}$) made up with benzene. The column was eluted with twenty $100-\mathrm{ml}$ portions of 2% methanol in benzene followed by forty $100-\mathrm{ml}$ portions of 5% methanol-benzene. Fractions 34-41 were ascertained by tlc (as above) to be the product, combined in acetone, and crystallized as microchisters from acetone-Skellysolve B, giving $2.29 \mathrm{~g}(38 \%), \mathrm{mp} 208.0-209.5^{\circ}$. A sample was recryatallized once for analysis; mp 210.5-211.5 (from acetone); $\nu_{\text {max }}$ $3440 \mathrm{sh}, 3340 \mathrm{sh}, 3210,1705,1640,1610,1600$, and $1560 \mathrm{~cm}^{-1}$; $\lambda_{\max }^{\mathrm{E} \text { OH }} 260 \mathrm{~m} \mu(\epsilon 23,750), 30 \mathrm{~T}(11,750)$.
${ }_{\text {max }}$ nal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 71.9 ; $\mathrm{H}, 5.32 ; \mathrm{N}, 7.19$. Found: C, 71.41 ; H, 5.59 ; N, 7.46.
General Procedure for Condensation Reactions and Subsequent Hydrolyses,--The protected nucleotide (3 mmoles) was mixed with the protected nucleoside ($6-10$ mmoles) together with 500 mg of dry pyridinium Dowex $50 \mathrm{~W}-\mathrm{X} 8$ iu 25 ml of purified pyridine. The suspension was taken to dryness at 30° under reduced pressure (water aspirator). The coevaporation with purified dry pyridine was repeated five times. The residue was then suspended in 25 ml of purified pyridine, 10 g of dicycluhexylcarbodiimide (IDCC) was added, and the mixture was shaken in the dark for 4 days. Water $(10 \mathrm{ml})$ was then added and the suspension was stirred at room temperature overnight. The insoluthle urea and resin were filtered and washed with two $20-\mathrm{ml}$ portions of $50 F_{6}$ aqueons pyridine. The combined filtrates were washed with four $50-\mathrm{ml}$ portions of petroleum ether and then the aqueous portion was taken to dryness in vacuo at 40°. The residue was resuspended in aqueous pyridine and again taken to dryness as above and the last traces of $\mathrm{H}_{2} \mathrm{O}$ were removed under high vacuum. The residue was then taken up in 50 ml of methanol saturated with anhydrous NH_{3} and stirred at room temperature for 24 hr . This solhtion was then taken to dryness under reduced pressure. If there were any methoxytrityl or trityl proterting groups preseut (route 1) the residue was taker up in 50 ml of 80% acetic acid and stirled at rom temperature for 6 of 24 hr , respectively, for the protecting groups. The solution was once again taken to dryness nuder reduced pressure at 30°. The product from the base or acid hydrolysis was then taken up in 1 l. of $\mathrm{H}_{2} \mathrm{O}$, fittered free of insoluble material, and extracted exhanstively with ether. The resulting solution was then freeze-dried and the residue was subjected to one or more of the separation procednres described below.
Separation Methods. A. Ion-Exchange Chromatography over Dowex 1-X2 (Formate).--Chromatography was carried out by the procedure of Taylor and Hall': on AG 1-X2 (formate) resin. The total product from the condensation procedure carried on on the scale deveribed ahove was adsorbed onto the " 1 -mmole" column of Taylor and Hatl ($200-400$ mesh, 1.8×27

[^7](m) in $\mathrm{Il}_{2} \mathrm{O}$. The columm was then elated by gradient with from 0.04 to $0.08 M$ ammonium formate (pH 5.0) employing 2 l. of each salt solntion. The columu was monitored at ant appropriate wavelength (near the $\lambda_{\max }$ of the product) by meant of a Vanguard 1056 OD uv scanner with 0.1-mm path lengit cetts so the optical densities of up to about 30 could be convenicntly read. The fractions were collected in 20 -nal portions in a fraction collector (photoelectric or precise volame collectort Rasell on the elution diagram generated by the uy scanner with the peaks over 30 OD's filled in hy namaal dilntion and reading mpropriate fractions were lombined and freeze-dried several limes from deionized water in order to rid the product of sath, The resulting freeze-dried solid was then dissolved in $\mathrm{D}_{2} \mathrm{O}$ and its nnir spectrum was run (see ' Pable II \%. The sample was then fieeze-dried once again, then taken up in sterjle $\mathrm{H}_{2} \mathrm{O}$ so that the ontiral density of the solntions were in the range of $100-500$ and the uv spectra, high voltage electrophoresis (hve), tle, and enayuntic splitting were rim. In those cases, where the products were wit free of moleoside or maleotide an this point, they were forther purified hy ofe (helow).
B. DEAE-Celtutose Chromatography.... (Arommagraphy ou 1)ドAlincellatose (\boldsymbol{S} :and S) was carried out as dencribed by Snif and Fhorana. ${ }^{18}$ Por acombensation in which the total product Was of the moder of $44,0000 \mathrm{OD}$ anits, the prodact, after suitathe fydrolyses, was adsorbed ontw a colnmn of purified DF:AErollnose ($(0) \times 5.8$ (m) which had been preparen as described in the atoove reference. The cohamu was elated first with 600 ml of 0.02 M triethylamine bicarbonate (pHI 7.5), then over a gradeal of from 0.02 to $0.12 M$ salt employing \bar{i} l. of each buffer. The column was monitored as described in section A above and the products were treated after combining the fraction as demilued atove. The products of the section A chronnatography were ammonmm salts of the dimacleoside phosphates and in this arse the triethylanive salts.
C. Continuous Flow Electrophoresis (Cfe):- Fol cfe separ:tions, the Hannig Model FF electrophoretic separator (Brinknian Ins(ruments Co.) was employed. The experimental detait, for each of these rums will he reported separately. ${ }^{4}$ Componnd $12,16,17,20,21,32,33$, and 36 were purified in this manuer.
$\mathrm{N}^{4}, 2^{\prime}, 3^{\prime}$-O-Triacetyl-5'-O-trityl-aca-cytidine (37) , --A $\overline{\mathrm{O}} \mathrm{O} 0-\mathrm{mg}$ anople of the trityl ether (2) was samponded in! 9 ml of pyridiae and treased with 3 mof of acetio anhydride an roon temperature withstirring until solntion was connplete. Stirring was contimel for 2 hr whereupon the solution set uf) io a erystalline mass, The sumpension was then poured into 90 ml of water and the white crystalline prodact was isolated, washed thormaghly with water, and dried (vachum, 60°) giving $950 \mathrm{mg}, \mathrm{mp}, 248-249.5^{\circ}$. Rearysallization from ethanot afforden wotortes rosetics (800 111g): $1110251-252^{\circ} ; \quad \nu$, max $3210,1760,1720,1070$, ald 1020

$2^{\prime}, 3^{\prime}$-Diacetyl- and $\mathbf{N}^{4}, 2^{\prime}, 3^{\prime}$-Triacetyl-ala-cytidine (38 and 39).
A $1.3-\mathrm{g}$ sample of the trityl triacetate (37) was suspended in 10 ml of $\mathrm{SO} \%$ acetic acid and heated to reflux for 10 min . The uspension was then refrigerated, filtered free of triphenylcartinol, and taken to drymess in vacwo at $30-40^{\circ}$. The product was absorbed onto sitica gel ($2.8 \times 33 \mathrm{~cm}$) (column volume 200 mb) and eluted with thirty $20-\mathrm{ml}$ fractions of methanol-benzene (25:75). Fractions 5-11 were combined (455 mg) and recrystalfized from acetone-Skellysolve B giving $240 \mathrm{mg}\left(30^{\circ} / \mathrm{c}\right)$, mp 171.0 172.5°. A sample was recrystallized once for analysis; mp $174.5175 .5^{\circ}, \nu_{\max } 3400,3280,3240,1750,1710$, and $1655 \mathrm{~cm} \cdots$;
 is consistem for the $\mathrm{N}^{1},()^{2}, \mathrm{O}^{2}$-l macetate

Anol. Chated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{8} \mathrm{O}_{8}$: C, 48.78 ; HI , $5.19 ; \mathrm{N}, 11.3 \mathrm{~S}$. Fonuld: C. $4 \mathrm{S.79:} \mathrm{H}, \mathrm{4.81;} \mathrm{N} 11.66.$,

Fractions 26-29 contained a very small anount of the $02^{2}, \mathrm{O}^{3}$ diacetate identified by chromatographic mobility on silica gel ($:$ the ($\mathrm{MeOH}-\mathrm{C}_{6} \mathrm{H}_{6} .25: 75$), $\lambda_{\max } 2 \overline{7} 1 \mathrm{~m} \mu$ (free $4-\mathrm{NH}_{2}$ group).
ar a-Cytidine 5^{\prime}-Phosphate ($\mathbf{4 0}$).-.-The above triacetate containing a few per cent of the N-deacylated material (2.5 g) was ansolved in 4i) ml of prridine $0.325 M$ in cyanvelhyl phosphate. An aldditional 20 ml of pyridine was added containing 5.6 g (26 tumistes) of [oCC. The mixture was shaken in the dark for : dass, after which time 10 ml of Hos was added. The solation

tional 35 ml of $\mathrm{H}_{2} \mathrm{O}$ was added, and the solation was hiltered flee of dicyclohexylarea. The filtrate was taken to dryness, diluted with 50 mb of $\mathrm{H}_{2} \mathrm{O}$, and again taken 0 dryness lat remove residand hridine. The residne was then partitined beiween II.O mut

 and the solation wa treated m 100° for 1 hrr, after which biluc atho suspension was chilled and filtered free of tithimen phosphata, 'Pho:

 duced pressure $\left(40^{\circ}\right.$, and the solaiion wan paseet ovel inted

 tions 13-3:3 (mator seale) were combined, afier a 20 -mit foremu. and trophitized to give a white ersesthine sotid, vied ent mon (1tri. This materist was identical by paper chomanorraphy with a sample prepared enzonaticotly, ipapergram f_{i} ísotyen 13

Ammonium mo-Cytidine $\mathbf{5}^{\prime}$-Phosphate Hemihydrate 40.
 was laken ap in a mixture of methanod (100 mb) and anhydronV H_{3}-aturated methanod (170 mot and stirred at mom temperatare oxemiglat. Abont ame-half of the suchi was distille ander redned pressume 'the rembting ampension was chilted in 4° and the ergsaltine ammoniom satt wa fitered and wasterd

Methyl-a,
 three limes, then disestred in 20 ut of dy prodine and conted

 revidue was taken ut) in 200 mt of methat and 25 mot of an-
 overnight. The (silica get (i, solvent A) indicated a single anajo
 whe of them obvionsty benzamide. 'l'he solation was taken to

 riat was diesolved in 8.0 nol of sterite water and filtered; $\lambda_{\text {mas }}^{\text {rum }}$

 enzymaticatly aud by unur spectra (Tatste II).
a'd-Cytidine 3^{\prime} - and 2^{\prime}-Monophosphates (44 and 45),--9'-1)-Tritytara-cytidine (9:0 mg, 2 munoles) was added to 4.0 mb of $1 M$ damoether phomphate (4 mondes) in prodine and the whation was taken in invocs mader reduced presure. The resithe: was evaporated with three frex portoms of dry prodime mat

 hilirete was wathed wire will perotemether. The mitmgen-

NaOH at ambient temperature for 20 hr . The reaction was terminated by the addition of Dowex $50-\mathrm{X} 8$ (pyridinium, 30 ml). The solution was filtered free of resin and the resin was washed with water. The combined filtrates were taken to dryness at 40° (in vacuo).

The above gummy product was dissolved in 100 ml of 80% acetic acid and allowed to stand at room temperature for 3 days. The solvent was removed under reduced pressure at 40°, the residue was taken up in a small amount of $\mathrm{H}_{2} \mathrm{O}$, filtered free of triphenylcarbinol, and adsorbed onto a cohmm of $\mathrm{AG} 1-\mathrm{X} 8$ (formate) ion-exchange resin of dimensions $2.8 \times 24 \mathrm{~cm}$, and eluted with 7 l . of 0.01 M formic acid, followed by 5 l . of 0.02 M formic acid, collecting $20-\mathrm{ml}$ fractions. Fractions $195-210$ were combined and freeze-dried and the product was crystallized from $\mathrm{H}_{2} \mathrm{O}$ to give 10 mg of ara-cytidine 2^{\prime}-phosphate as colorless rosettes: $\lambda_{\max }^{\mathrm{pH}} 4.5212 \mathrm{~m} \mu(\epsilon 9600), 274(9950) ; \quad \lambda_{\max }^{\mathrm{pH} 2} \operatorname{sh} 213 \mathrm{~m} \mu(\epsilon 11,550)$, 279 (13,650).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{P}$: C, $33.44 ; \mathrm{H}, 4.36$; Found: C, 33.91; H, 4.71.

Fractions 426-270 were combined, freeze-dried, and isolated as a crystalline solid (112 mg) of ara-cytidine 3^{\prime}-phosphate: $\lambda_{\max }^{\mathrm{pH}}{ }^{4.5}$ $\cdot 2 \bar{i} 4 \mathrm{~m} \mu(\epsilon 10,700)$, sh $213(10,750) i \lambda_{\max }^{\mathrm{pH} 1} \operatorname{sh} 213 \mathrm{~m} \mu(\epsilon 10,750)$, 279 (13,900).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}$: C, $33.44 ; \mathrm{H}, 4.36 ; \mathrm{N}, 13.00$; P, 9.58. Found: C, $33.12 ; \mathrm{H}, 4.58 ; \mathrm{N}, 12.99 ; \mathrm{P}, 9.65$.
5^{\prime} - O -Trityl- N^{6}-benzoyladenosine (46),- N^{6}-Benzoyladenosine ($2.09 \mathrm{~g}, 5.4 \mathrm{mmole})^{19}$ was dissolved in 20 ml of anhydrous pyridine and treated with trityl chloride ($3.0 \mathrm{~g}, 10.8$ mmoles) at room temperature for 2 days. The reaction mixture was then poured into 500 ml of ice-water and allowed to stir at room temperature. The product was filtered, washed thoroughly with water and ether, then crystallized from methanol containing a trace of pyridine, mp 198-201.5 ${ }^{\circ}$. A sample was recrystallized in the same manner for analysis; $\mathrm{mp} 203.0-204.5^{\circ} ; \dot{\lambda}_{\max }^{\mathrm{EtOH}} 230 \mathrm{~m} \mu \mathrm{sl} \mathrm{sh}$ (ϵ $20,250), 260 \mathrm{sl}$ sh $(12,800)$, and $279(19,900)$.

Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{6}$: C, $70.46 ; \mathrm{H}, 5.09 ; \mathrm{N}, 11.41$. Found: C, $70.10 ; \mathrm{H}, 5.12 ; \mathrm{N}, 11.59$.

Enzyme Hydrolyses. A. Snake Venom Diesterase.-Purified phosphodiesterase was obtained from Worthington Biochemicals Corp., Freehold, N. J., and a standard solution was prepared in sterile $\mathrm{H}_{2} \mathrm{O}$ so that the concentration of protein was from 5 to $10 \mathrm{mg} / \mathrm{ml}$ adjusted so that the potency (as described by Worthington) remained constant. The incubation mixture contained
(19) R. Lolımannanıl H. G. Khorana, J. Am. Chem. Soc. 86, 4188 (1964).
the substrate $[1-15$ OD units (in water), see Table II], $10 \mu \mathrm{l}$ of $1 M \mathrm{pH} 9.0$ Tris buffer, $40 \mu \mathrm{l}$ of enzyme solution (ca. 0.2 mg of protein), and sufficient $\mathrm{H}_{2} \mathrm{O}$ to make the total volume 100 μ l. The incubation was carried out at 37° for 2 hr except where noted and all of the incubations were carried to complete hydrolysis. After heating at 100° for 2 min to precipitate protein, the entire reaction mixture was streaked on 3 MM paper and developed with solvent A vs. suitable controls. The hydrolysis products were then extracted from the paper and examined by uv. In every case, the ratio (millimicromoles) of mucleoside and nucleotide products was consistant within experimental error with that anticipated (i.e., $1: 1$ for dinucleoside phosphates). The recovered material, where desirable, was then chromatographed by tlc (cellulose) or by paper high-voltage electrophoresis in order to unquestionably identify every product.
B. Spleen Phosphodiesterase.-The diesterase was obtained as above from Worthington Biochemicals and was taken up in $\mathrm{H}_{2} \mathrm{O}$ so that the activity (Worthington) was $20-30$ units $/ \mathrm{ml}$. The incubation mixture as described by Razzelt, ${ }^{20}$ contained 20 $\mu \mathrm{l}$ of 1 N ammonimm acetate (pII 5.7), $5 \mu \mathrm{l}$ of $1 \mathrm{C}_{0}$ Tween 80 i $\mathrm{H}_{2} \mathrm{O}, 1-15 \mathrm{OD}$ units of dinucleoside phosphate (in $\mathrm{H}_{2} \mathrm{O}$), $40 \mu \mathrm{l}$ of enzyme, and sufficient $\mathrm{H}_{2} \mathrm{O}$ to make 105μ. The incubation, termination, and identification of products was carried out as described for venom in A.
C. RNAase.-Crystalline bovine parıcreatic RNAase (Worthington, highly purified) was used to make ıp a stock solution of the enzyme whose concentration was $5 \mathrm{ml} / \mathrm{ml}$. The incubation mixture contained $2.5-10$ OD units of substrate in $\mathrm{H}_{2} \mathrm{O}, 10 \mu \mathrm{l}$ of RNAase stock solution, and sufficient $\mathrm{H}_{2} \mathrm{O}$ to make $100 \mu \mathrm{l}$ of solution. Incubations were carried ont for $2-6 \mathrm{hr}$ at 37° after which time, to total reaction mixtares, the solutions were streaked onto 3MM paper and developed with solvent A. The identification and uv quantitation of the products was carried out as described for venom in section A.
D. Bacterial Alkaline Phosphatase-Commercial enzyme from Worthington Biochemicals (concentration $2 \mathrm{mg} / \mathrm{ml}$) was diluted tenfold with $0.05 M$ Tris (pH 9). The incubation was carried out according to Khorana and Vizsolzi ${ }^{21}$ and the mixtare contained $0.1-1 \mu$ mole of substrate nucleotide, $10 \mu \mathrm{l}$ of Tris (pH 9.0) , $10 \mu \mathrm{l}$ of enzynne solution, and sufficient $\mathrm{H}_{2} \mathrm{O}$ to make 100μ. The mixture was incubated for 2 hr at 37° after which time the nucleoside prodncts were isolated and identified as for the venom enzyme (A) above.

[^8]
[^0]:

 (1965:

[^1]: (3) For leading references before 1962 see (a) H. G. Khorana. "Some Rebent Developments in the Chemistry of Phosphate Esters of Biological Interest," John Wiles and Sons, Inc., New York, N. Y., 1961. Chapters 2, D, and b: (b) A. M. Michelson, "The Chemistry of Nucleosides and Nucleotides," Academic Press lnc., New York, N. Y.. 1963. Nore recent work is found in (c) A. Smith, D. H. Rammler. I. H. Goldberg. and H. G. Kīhorana, J. Am. Chem. Soc. 84. 430 (1962): (d) D. H. Rammler and H. G. Khorana, ibid., 3112 (1962): (e) G. Weimann and H. G. Khorana, ifjd., 4329 (1962): (f) D. H, Rammler, Y. Lapidot, and H. G. Khorana, ibid. 85. 1989 (1963): (g) H. Schaller, G. Weimann. B. Lach, and H. G. Khorana, iłid.. 85. 3821 (1963): (h) H. Schaller and H. G. Khorana, ibid. 85, 3828 (1963): (i) E. Lapidot and H. G. Khorana, ibid., 85, 3852 (1963); (j) R. Lohrmann anl H. G. Khorana، ibid., 86, 4188 (1964).
 (4) Details of this method will be published separately by H. Ko. M. Royer, and W. J. Wechter, Anal. Biochem., in press.

[^2]: (5) (a) A. II. Miuluelsun, Biorhim. Biophys. Actm, 55, 841 (1962): (1) G. M. Tener. J. Ain. Chem. Sor., 83, 159 (1961).
 (6) The shorthand ablureviations used in this paper are as follows: the 5) linkage is to the left of CA. and the 3^{\prime} linkage followed tiy the 2^{\prime} linkage and the base sulbstituent is to the right of CA. Also, a p to the left of the symbol (C.1. etc) indicates a 5^{\prime} linkage. a superseript p to the right of the symbol indicates a 2^{\prime} linkage, and a subscript p to the right of the symbol indicates a 3^{\prime} linkage.

[^3]: (7) (a) The nucleotide was prepared enzymatically by L. I. Pizer and S S. Cohen. J. Biol. Chem.. 235, 2387 (1960), and later by direct phosphorytation with PPA by P. T. Cardeilhac and S. S. Cohen, Cancer Res., 24, 1595 (1964). in 6% yield. Later the unprotected nucleoside was phosphorylated in 22% yield by the Tener procedure. The structure of the nucleotide produced in this manner was assigned on the basis of its chromatographic mobility and enzymatic dephosphorytation by the mucleotidase from rye grass. Fmploying paper chumatography with solvent B, the enzymaticalls prolucel nucleotide appears t_{0} be the same as our cryslalline syntletic proturt. (h) s. S. Colsen, Prustr. Nimleic Awd Res., 5. 2 (1966).

[^4]: (12) R. Thelfuril, MI. M. Fleyslier, and R. H. Hall, J. Med. Chem., 8. 486 (1965).
 (13) W. J. Wecliter anll L. D. Zeleznick, to be publisherl.

[^5]:

[^6]:

[^7]: (17) P. R. 'Jaylor and R. H. Hatt, J. Ory. Chem., 29, 1078 (1964).

[^8]: (20) W. E. Razzell. Methods Ensymol.، 6. 245 (1933).
 (21) H. G. Khorana and J. P. Vizsolxi, J. Am. Chem. Sor:, 83, 675 (1961).

